Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. True **FALSE** If we want to show that the statements S_n are true for all $n \geq 0$, we need to prove the base case n = 1.

Solution: The base case is n = 0.

2. **TRUE** False If we use induction to prove a solution to $a_n = n^2 a_{n-1} - a_{n-2} - a_{n-3}^2$, then we will need to use S_n, S_{n-1} , and S_{n-2} to prove S_{n+1} .

Solution: This is a third-order relation so we will need to assume the IH for the past 3 values of n to prove n + 1.

Show your work and justify your answers. Please circle or box your final answer.

3. (10 points) (a) (7 points) Prove that $1 - 2 + \cdots + (-2)^n = \frac{1 - (-2)^{n+1}}{3}$ for all $n \ge 0$.

Solution: First we prove the base case n = 0. Then the LHS is 1 and the RHS is $\frac{1-(-2)}{3} = 1$ =LHS as required.

Now assume the inductive hypothesis IH: $1-2+\cdots+(-2)^n=\frac{1-(-2)^{n+1}}{3}$ for some $n\geq 1$.

Now we want to prove that $1-2+\cdots+(-2)^{n+1}=\frac{1-(-2)^{n+2}}{3}$. We have that the left hand side is

$$LHS = 1 - 2 + \dots + (-2)^{n} + (-2)^{n+1}$$

$$\stackrel{IH}{=} \frac{1 - (-2)^{n+1}}{3} + \frac{3(-2)^{n+1}}{3}$$

$$= \frac{1 + 2(-2)^{n+1}}{3}$$

$$= \frac{1 - (-2)(-2)^{n+1}}{3} = \frac{1 - (-2)^{n+2}}{3} = RHS$$

Thus, by MMI, we know that $1 - 2 + \cdots + (-2)^n = \frac{1 - (-2)^{n+1}}{3}$ for all $n \ge 1$.

(b) (3 points) What is the probability that when picking a hand of 5 cards out of a deck of 52 cards, you don't have any pairs (or triples/four of a kind)?

Solution: The total number of ways to pick 5 cards is $\binom{52}{5}$. Then, since we don't have any pairs, we have 5 different values and there are $\binom{13}{5}$ ways to choose them. Then, for each value, there are 4 suits so the probability is

$$\frac{\binom{13}{5}4^5}{\binom{52}{5}}.$$