Quiz 4; Tuesday, 2/19/2019
Section \#206; Time: 9:30 AM
GSI name: Roy Zhao
Name:

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. True FALSE If we want to show that the statements S_{n} are true for all $n \geq 0$, we need to prove the base case $n=1$.

Solution: The base case is $n=0$.
2. TRUE False If we use induction to prove a solution to $a_{n}=n^{2} a_{n-1}-a_{n-2}-a_{n-3}^{2}$, then we will need to use S_{n}, S_{n-1}, and S_{n-2} to prove S_{n+1}.

Solution: This is a third-order relation so we will need to assume the IH for the past 3 values of n to prove $n+1$.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (7 points) Prove that $1-2+\cdots+(-2)^{n}=\frac{1-(-2)^{n+1}}{3}$ for all $n \geq 0$.

Solution: First we prove the base case $n=0$. Then the LHS is 1 and the RHS is $\frac{1-(-2)}{3}=1=$ LHS as required.
Now assume the inductive hypothesis IH: $1-2+\cdots+(-2)^{n}=\frac{1-(-2)^{n+1}}{3}$ for some $n \geq 1$.
Now we want to prove that $1-2+\cdots+(-2)^{n+1}=\frac{1-(-2)^{n+2}}{3}$. We have that the left hand side is

$$
\begin{aligned}
\text { LHS } & =1-2+\cdots+(-2)^{n}+(-2)^{n+1} \\
& \stackrel{I H}{=} \frac{1-(-2)^{n+1}}{3}+\frac{3(-2)^{n+1}}{3} \\
& =\frac{1+2(-2)^{n+1}}{3} \\
& =\frac{1-(-2)(-2)^{n+1}}{3}=\frac{1-(-2)^{n+2}}{3}=\text { RHS }
\end{aligned}
$$

Thus, by MMI, we know that $1-2+\cdots+(-2)^{n}=\frac{1-(-2)^{n+1}}{3}$ for all $n \geq 1$.
(b) (3 points) What is the probability that when picking a hand of 5 cards out of a deck of 52 cards, you don't have any pairs (or triples/four of a kind)?

Solution: The total number of ways to pick 5 cards is $\binom{52}{5}$. Then, since we don't have any pairs, we have 5 different values and there are $\binom{13}{5}$ ways to choose them. Then, for each value, there are 4 suits so the probability is

$$
\frac{\binom{13}{5} 4^{5}}{\binom{52}{5}}
$$

